

American Water Works Association

Upgrading a Drinking Water Membrane Plant with Ceramic Membranes, a Case Study M. Shaw, G. Galjaard, H. Evans, J. Pressdee

Nanostone Water

Canyon Regional Water Authority(CRWA)

CRWA's Lake Dunlap Water
 Treatment Plant is located in
 New Braunfels, Texas

Technolog

- The plant treats surface water from the Guadalupe River
- Licensed to produce 14.4
 MGD (55 MLD)

Operations rely on robust MF / UF System

Struggling polymeric MF system rendered the system unable to meet capacity

CHALLENGES

Difficulty meeting capacity due to high downtime for membrane cleaning and repairs

Frequent membrane fiber breakage threatened water quality

Low water recovery rate of 83%; high amount of wasted water and environmental impact

High labor, chemical and power costs

To meet capacity, CRWA needed a robust alternative

2021 Membrane Technology

What is a Ceramic Membrane?

- Ceramic membranes are membranes that have at least one layer made of ceramic material
- This definition includes:
 - Inorganic membranes on a metal or glass support
 - Hybrid membranes with an organic template or top layer
- Most common membrane materials used are:
 - Alumina (aluminium oxide Al2O3)
 - Silica (silicon dioxide SiO2)
 - Titania (titanium dioxide TiO2)
 - Zirconia (zirconium dioxide ZrO2)
 - Silicon carbide (SiC)
 - Zeolites
 - Combinations of the above

- Ceramic membranes have a robust construction that maintains operation and integrity for >20 years
- Wide feed channels tolerant of high solids loading and allow high system recovery
- Tight pore size distribution leads to dependable filtrate quality and reliable operation

2021 Membrane Technology

Ceramic membrane have many differentiating features

Operate at **high flux** (3–6 times higher than polymeric UF)

Higher recovery than polymeric MF/UF

Runs stably at **high solids loading**, especially inorganics

Dosing of coagulant is well-tolerated and even improves performance

Stable operation without pre-treatment (ceramic UF eliminates the need for clarifiers and multi-media filters which are often used before polymeric UF)

footprint pH resistance from 1–13 in cleaning, 2–12 in operation

CapEx-competitive on a system-to-system basis with **compact**

Operational temperature 33 –113 °F (0.5 –45 °C)

Depending on application, membranes may be guaranteed for up to 20 years

Robust and reliable (no fibers to break or repair)

Lower operational complexity and cost (no air scour required, fewer chemicals and electricity when removing treatment steps, higher water recovery)

Direct retrofit of existing membrane system

One for one membrane replacement utilizing the existing infrastructure (racks, pumps, piping & valves)

TCEQ Protocol for Capacity Rating

Key Client Objectives		
Water Quality	Filtrate turbidity below 0.3 NTU	
Plant Capacity	14.4 MGD (55 MLD) net production	
Recovery	>93.5%	

Approved Protocol:

- 30 day demonstration period
- Full CIP
- 10 day recovery demonstration

Demonstration settings to exceed objectives

Key Operationa	 Parameters
-----------------------	---------------------

Flux	217 GFD (365 LMH)
Filtration Cycle	90 min
Backwash Sequence	Backwash 294 GFD (500 LMH), 30 sec Reverse feed flush 217 GFD (365 LMH), 40 sec
Maintenance Wash	NaOCI Chemically Enhanced Backwash, 1 per 12 cycles
Resulting Recovery	97.7%

Sustainable operation through demonstration study

2021 Membrane Technology

2021 Membrane Technology

Stable water quality throughout study

Stable integrity testing

Expanded treatment capacity by 40% in same footprint while greatly reducing operational costs

	Incumbent	Nanostone
Net Production	10.2 MGD	14.4 MGD
Membrane System Recovery	83.6%	97.7%
Water Quality	0.074 NTU (95%)	0.025 NTU (95%)

Annual Operational Savings		
Labor	\$30,000	
Chemicals	\$3,665	
Energy	\$65,380	
Membrane Replacement	\$71,280	
Total	\$170,325	

Stable operation continues since 2019

Filtration flux and normalized TMP at 20 °C

Ceramic membrane system operation data

Normalized System Permeability at 20 °C

Ceramic membranes are the solution CRWA needed

Capacity: 14.4 MGD

Installation Date: June, 2019

97.7% Water recovery rate;

50% Reduction in Power use.

NANOSTONE SOLUTION

Able to achieve full rated capacity of plant within existing plant

Easily passes daily integrity tests without operator intervention; improved water quality

Recovery rate improved to 97%

Significant cost reduction including 50% less power consumption

Thank you!

"Nanostone has been the answer to our problems. The ceramic membranes are robust, low maintenance and use less process water."

Adam Telfer | CRWA Operations Manager

